Word ladder
class Solution:
def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int:
wordSet = set(wordList)
if len(wordSet)== 0 or endWord not in wordSet:
return 0
mapping = {beginWord:1}
queue = deque([beginWord])
while queue:
word = queue.popleft()
path = mapping[word]
for i in range(len(word)):
word_list = list(word)
for j in range(26):
word_list[i] = chr(ord('a')+j)
newWord = "".join(word_list)
if newWord == endWord:
return path+1
if newWord in wordSet and newWord not in mapping:
mapping[newWord] = path+1
queue.append(newWord)
return 0
Word Ladder
A transformation sequence from word beginWord to word endWord using a dictionary wordList is a sequence of words beginWord -> s1 -> s2 -> ... -> sk such that:
- Every adjacent pair of words differs by a single letter.
- Every
sifor1 <= i <= kis inwordList. Note thatbeginWorddoes not need to be inwordList. sk == endWord
Given two words, beginWord and endWord, and a dictionary wordList, return the number of words in the shortest transformation sequence from beginWord to endWord, or 0 if no such sequence exists.
Example 1:
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"] Output: 5 Explanation: One shortest transformation sequence is "hit" -> "hot" -> "dot" -> "dog" -> cog", which is 5 words long.
Example 2:
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"] Output: 0 Explanation: The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.
Constraints:
1 <= beginWord.length <= 10endWord.length == beginWord.length1 <= wordList.length <= 5000wordList[i].length == beginWord.lengthbeginWord,endWord, andwordList[i]consist of lowercase English letters.beginWord != endWord- All the words in
wordListare unique.