Lru cache
class ListNode:
def __init__(self, key, value):
self.key = key
self.value = value
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.cap = capacity
self.map = {}
self.head = ListNode(-1, -1)
self.tail = ListNode(-1, -1)
self.head.next = self.tail
self.tail.prev = self.head
def get(self, key: int) -> int:
if key not in self.map:
return -1
else:
node = self.map[key]
self.remove(node)
self.add(node)
return node.value
def put(self, key: int, value: int) -> None:
if key in self.map:
old_node = self.map[key]
self.remove(old_node)
node = ListNode(key, value)
self.map[key] = node
self.add(node)
if len(self.map) > self.cap:
del_node = self.head.next
self.remove(del_node)
del self.map[del_node.key]
def add(self, node):
prev_end = self.tail.prev
prev_end.next = node
node.prev = prev_end
node.next = self.tail
self.tail.prev = node
def remove(self, node):
node.prev.next = node.next
node.next.prev = node.prev
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
LRU Cache
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache class:
LRUCache(int capacity)Initialize the LRU cache with positive sizecapacity.int get(int key)Return the value of thekeyif the key exists, otherwise return-1.void put(int key, int value)Update the value of thekeyif thekeyexists. Otherwise, add thekey-valuepair to the cache. If the number of keys exceeds thecapacityfrom this operation, evict the least recently used key.
The functions get and put must each run in O(1) average time complexity.
Example 1:
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4
Constraints:
1 <= capacity <= 30000 <= key <= 1040 <= value <= 105- At most
2 * 105calls will be made togetandput.