3sum
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
res = []
nums.sort()
for i in range(len(nums)):
left = i + 1
right = len(nums) - 1
if nums[i] > 0:
return res
if i > 0 and nums[i] == nums[i - 1]:
continue
while left < right:
if nums[i] + nums[right] + nums[left] > 0:
right -= 1
elif nums[i] + nums[right] + nums[left] < 0:
left += 1
elif nums[i] + nums[right] + nums[left] == 0:
res.append((nums[i], nums[left], nums[right]))
while left < right and nums[left] == nums[left + 1]: left += 1
while left < right and nums[right] == nums[right - 1]: right -= 1
left += 1
right -= 1
return res
3Sum
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4] Output: [[-1,-1,2],[-1,0,1]] Explanation: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0. nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0. nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0. The distinct triplets are [-1,0,1] and [-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1] Output: [] Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0] Output: [[0,0,0]] Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000-105 <= nums[i] <= 105