Minimum falling path sum
class Solution:
def minFallingPathSum(self, matrix: List[List[int]]) -> int:
m, n = len(matrix), len(matrix[0])
dp = [[0] * n for _ in range(m)]
for i in range(n):
dp[0][i] = matrix[0][i]
for i in range(1, m):
for j in range(n):
if j == 0:
dp[i][j] = min(dp[i - 1][j], dp[i - 1][j + 1]) + matrix[i][j]
elif j == n - 1:
dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1]) + matrix[i][j]
else:
dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1], dp[i - 1][j + 1]) + matrix[i][j]
# print(dp)
return min(dp[-1])
Minimum Falling Path Sum
Given an n x n array of integers matrix, return the minimum sum of any falling path through matrix.
A falling path starts at any element in the first row and chooses the element in the next row that is either directly below or diagonally left/right. Specifically, the next element from position (row, col) will be (row + 1, col - 1), (row + 1, col), or (row + 1, col + 1).
Example 1:

Input: matrix = [[2,1,3],[6,5,4],[7,8,9]] Output: 13 Explanation: There are two falling paths with a minimum sum as shown.
Example 2:

Input: matrix = [[-19,57],[-40,-5]] Output: -59 Explanation: The falling path with a minimum sum is shown.
Constraints:
n == matrix.length == matrix[i].length1 <= n <= 100-100 <= matrix[i][j] <= 100