为了绝杀编辑距离,卡尔做了三步铺垫
参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
# 动态规划之编辑距离总结篇 本周我们讲了动态规划之终极绝杀:编辑距离,为什么叫做终极绝杀呢? 细心的录友应该知道,我们在前三篇动态规划的文章就一直为 编辑距离 这道题目做铺垫。 ## 判断子序列 [动态规划:392.判断子序列](https://programmercarl.com/0392.判断子序列.html) 给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 这道题目 其实是可以用双指针或者贪心的的,但是我在开篇的时候就说了这是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。 * if (s[i - 1] == t[j - 1]) * t中找到了一个字符在s中也出现了 * if (s[i - 1] != t[j - 1]) * 相当于t要删除元素,继续匹配 状态转移方程: ## 不同的子序列 [动态规划:115.不同的子序列](https://programmercarl.com/0115.不同的子序列.html) 给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。 本题虽然也只有删除操作,不用考虑替换增加之类的,但相对于[动态规划:392.判断子序列](https://programmercarl.com/0392.判断子序列.html)就有难度了,这道题目双指针法可就做不了。 当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。 一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。 一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。 这里可能有同学不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。 例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。 当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。 所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配,即:dp[i - 1][j] 所以递推公式为:dp[i][j] = dp[i - 1][j]; 状态转移方程:if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
}
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length();
int n = word2.length();
int[][] dp = new int[m+1][n+1];
for(int i = 1; i <= m; i++){
dp[i][0] = i;
}
for(int i = 1; i <= n; i++){
dp[0][i] = i;
}
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
int left = dp[i][j-1]+1;
int mid = dp[i-1][j-1];
int right = dp[i-1][j]+1;
if(word1.charAt(i-1) != word2.charAt(j-1)){
mid ++;
}
dp[i][j] = Math.min(left,Math.min(mid,right));
}
}
return dp[m][n];
}
}