背包理论基础01背包 2
参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
# 动态规划:01背包理论基础(滚动数组) 本题力扣上没有原题,大家可以去[卡码网第46题](https://kamacoder.com/problempage.php?pid=1046)去练习 ## 算法公开课 **[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[带你学透0-1背包问题!(滚动数组)](https://www.bilibili.com/video/BV1BU4y177kY/),相信结合视频再看本篇题解,更有助于大家对本题的理解**。 ## 思路 昨天[动态规划:关于01背包问题,你该了解这些!](https://programmercarl.com/背包理论基础01背包-1.html)中是用二维dp数组来讲解01背包。 今天我们就来说一说滚动数组,其实在前面的题目中我们已经用到过滚动数组了,就是把二维dp降为一维dp,一些录友当时还表示比较困惑。 那么我们通过01背包,来彻底讲一讲滚动数组! 接下来还是用如下这个例子来进行讲解 背包最大重量为4。 物品为: | | 重量 | 价值 | | --- | --- | --- | | 物品0 | 1 | 15 | | 物品1 | 3 | 20 | | 物品2 | 4 | 30 | 问背包能背的物品最大价值是多少? ### 一维dp数组(滚动数组) 对于背包问题其实状态都是可以压缩的。 在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); **其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);** **与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了**,只用dp[j](一维数组,也可以理解是一个滚动数组)。 这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。 读到这里估计大家都忘了 dp[i][j]里的i和j表达的是什么了,i是物品,j是背包容量。 **dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少**。 一定要时刻记住这里i和j的含义,要不然很容易看懵了。 动规五部曲分析如下: 1. 确定dp数组的定义 在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。 2. 一维dp数组的递推公式 dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢? dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。 dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j]) 此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值, 所以递归公式为: 可以看出相对于二维dp数组的写法,就是把dp[i][j]中i的维度去掉了。 3. 一维dp数组如何初始化 **关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱**。 dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。 那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢? 看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。 **这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了**。 那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。 4. 一维dp数组遍历顺序 代码如下:for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
void test_1_wei_bag_problem() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagWeight = 4;
// 初始化
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
test_1_wei_bag_problem();
}
// 一维dp数组实现
#include <iostream>
#include <vector>
using namespace std;
int main() {
// 读取 M 和 N
int M, N;
cin >> M >> N;
vector<int> costs(M);
vector<int> values(M);
for (int i = 0; i < M; i++) {
cin >> costs[i];
}
for (int j = 0; j < M; j++) {
cin >> values[j];
}
// 创建一个动态规划数组dp,初始值为0
vector<int> dp(N + 1, 0);
// 外层循环遍历每个类型的研究材料
for (int i = 0; i < M; ++i) {
// 内层循环从 N 空间逐渐减少到当前研究材料所占空间
for (int j = N; j >= costs[i]; --j) {
// 考虑当前研究材料选择和不选择的情况,选择最大值
dp[j] = max(dp[j], dp[j - costs[i]] + values[i]);
}
}
// 输出dp[N],即在给定 N 行李空间可以携带的研究材料最大价值
cout << dp[N] << endl;
return 0;
}
public static void main(String[] args) {
int[] weight = {1, 3, 4};
int[] value = {15, 20, 30};
int bagWight = 4;
testWeightBagProblem(weight, value, bagWight);
}
public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
int wLen = weight.length;
//定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
int[] dp = new int[bagWeight + 1];
//遍历顺序:先遍历物品,再遍历背包容量
for (int i = 0; i < wLen; i++){
for (int j = bagWeight; j >= weight[i]; j--){
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
//打印dp数组
for (int j = 0; j <= bagWeight; j++){
System.out.print(dp[j] + " ");
}
}
def test_1_wei_bag_problem():
weight = [1, 3, 4]
value = [15, 20, 30]
bagWeight = 4
# 初始化
dp = [0] * (bagWeight + 1)
for i in range(len(weight)): # 遍历物品
for j in range(bagWeight, weight[i] - 1, -1): # 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
print(dp[bagWeight])
test_1_wei_bag_problem()
def test_1_wei_bag_problem(weight, value, bagWeight):
# 初始化
dp = [0] * (bagWeight + 1)
for i in range(len(weight)): # 遍历物品
for j in range(bagWeight, weight[i] - 1, -1): # 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
return dp[bagWeight]
if __name__ == "__main__":
weight = [1, 3, 4]
value = [15, 20, 30]
bagweight = 4
result = test_1_wei_bag_problem(weight, value, bagweight)
print(result)
func test_1_wei_bag_problem(weight, value []int, bagWeight int) int {
// 定义 and 初始化
dp := make([]int,bagWeight+1)
// 递推顺序
for i := 0 ;i < len(weight) ; i++ {
// 这里必须倒序,区别二维,因为二维dp保存了i的状态
for j:= bagWeight; j >= weight[i] ; j-- {
// 递推公式
dp[j] = max(dp[j], dp[j-weight[i]]+value[i])
}
}
//fmt.Println(dp)
return dp[bagWeight]
}
func max(a,b int) int {
if a > b {
return a
}
return b
}
func main() {
weight := []int{1,3,4}
value := []int{15,20,30}
test_1_wei_bag_problem(weight,value,4)
}
function testWeightBagProblem(wight, value, size) {
const len = wight.length,
dp = Array(size + 1).fill(0);
for(let i = 1; i <= len; i++) {
for(let j = size; j >= wight[i - 1]; j--) {
dp[j] = Math.max(dp[j], value[i - 1] + dp[j - wight[i - 1]]);
}
}
return dp[size];
}
function test () {
console.log(testWeightBagProblem([1, 3, 4, 5], [15, 20, 30, 55], 6));
}
test();
#include <stdio.h>
#include <string.h>
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define ARR_SIZE(arr) ((sizeof((arr))) / sizeof((arr)[0]))
#define BAG_WEIGHT 4
void test_back_pack(int* weights, int weightSize, int* values, int valueSize, int bagWeight) {
int dp[bagWeight + 1];
memset(dp, 0, sizeof(int) * (bagWeight + 1));
int i, j;
// 先遍历物品
for(i = 0; i < weightSize; ++i) {
// 后遍历重量。从后向前遍历
for(j = bagWeight; j >= weights[i]; --j) {
dp[j] = MAX(dp[j], dp[j - weights[i]] + values[i]);
}
}
// 打印最优结果
printf("%d\n", dp[bagWeight]);
}
int main(int argc, char** argv) {
int weights[] = {1, 3, 4};
int values[] = {15, 20, 30};
test_back_pack(weights, ARR_SIZE(weights), values, ARR_SIZE(values), BAG_WEIGHT);
return 0;
}
function testWeightBagProblem(
weight: number[],
value: number[],
size: number
): number {
const goodsNum: number = weight.length;
const dp: number[] = new Array(size + 1).fill(0);
for (let i = 0; i < goodsNum; i++) {
for (let j = size; j >= weight[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
return dp[size];
}
const weight = [1, 3, 4];
const value = [15, 20, 30];
const size = 4;
console.log(testWeightBagProblem(weight, value, size));
object Solution {
// 滚动数组
def test_1_wei_bag_problem(): Unit = {
var weight = Array[Int](1, 3, 4)
var value = Array[Int](15, 20, 30)
var baseweight = 4
// dp数组
var dp = new Array[Int](baseweight + 1)
// 遍历
for (i <- 0 until weight.length; j <- baseweight to weight(i) by -1) {
dp(j) = math.max(dp(j), dp(j - weight(i)) + value(i))
}
// 打印数组
println("[" + dp.mkString(",") + "]")
}
def main(args: Array[String]): Unit = {
test_1_wei_bag_problem()
}
}
pub struct Solution;
impl Solution {
pub fn wei_bag_problem2(weight: Vec<usize>, value: Vec<usize>, bag_size: usize) -> usize {
let mut dp = vec![0; bag_size + 1];
for i in 0..weight.len() {
for j in (weight[i]..=bag_size).rev() {
if j >= weight[i] {
dp[j] = dp[j].max(dp[j - weight[i]] + value[i]);
}
}
}
dp[dp.len() - 1]
}
}
#[test]
fn test_wei_bag_problem2() {
println!(
"{}",
Solution::wei_bag_problem2(vec![1, 3, 4], vec![15, 20, 30], 4)
);
}