0053.最大子序和
参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
# 53. 最大子序和 [力扣题目链接](https://leetcode.cn/problems/maximum-subarray/) 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 示例: - 输入: [-2,1,-3,4,-1,2,1,-5,4] - 输出: 6 - 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。 ## 算法公开课 **[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[贪心算法的巧妙需要慢慢体会!LeetCode:53. 最大子序和](https://www.bilibili.com/video/BV1aY4y1Z7ya),相信结合视频在看本篇题解,更有助于大家对本题的理解**。 ## 思路 ### 暴力解法 暴力解法的思路,第一层 for 就是设置起始位置,第二层 for 循环遍历数组寻找最大值class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result = INT32_MIN;
int count = 0;
for (int i = 0; i < nums.size(); i++) { // 设置起始位置
count = 0;
for (int j = i; j < nums.size(); j++) { // 每次从起始位置i开始遍历寻找最大值
count += nums[j];
result = count > result ? count : result;
}
}
return result;
}
};
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result = INT32_MIN;
int count = 0;
for (int i = 0; i < nums.size(); i++) {
count += nums[i];
if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
result = count;
}
if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
}
return result;
}
};
class Solution {
public:
int maxSubArray(vector<int>& nums) {
if (nums.size() == 0) return 0;
vector<int> dp(nums.size(), 0); // dp[i]表示包括i之前的最大连续子序列和
dp[0] = nums[0];
int result = dp[0];
for (int i = 1; i < nums.size(); i++) {
dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
}
return result;
}
};
class Solution {
public int maxSubArray(int[] nums) {
if (nums.length == 1){
return nums[0];
}
int sum = Integer.MIN_VALUE;
int count = 0;
for (int i = 0; i < nums.length; i++){
count += nums[i];
sum = Math.max(sum, count); // 取区间累计的最大值(相当于不断确定最大子序终止位置)
if (count <= 0){
count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
}
}
return sum;
}
}
// DP 方法
class Solution {
public int maxSubArray(int[] nums) {
int ans = Integer.MIN_VALUE;
int[] dp = new int[nums.length];
dp[0] = nums[0];
ans = dp[0];
for (int i = 1; i < nums.length; i++){
dp[i] = Math.max(dp[i-1] + nums[i], nums[i]);
ans = Math.max(dp[i], ans);
}
return ans;
}
}
class Solution:
def maxSubArray(self, nums):
result = float('-inf') # 初始化结果为负无穷大
count = 0
for i in range(len(nums)): # 设置起始位置
count = 0
for j in range(i, len(nums)): # 从起始位置i开始遍历寻找最大值
count += nums[j]
result = max(count, result) # 更新最大值
return result
class Solution:
def maxSubArray(self, nums):
result = float('-inf') # 初始化结果为负无穷大
count = 0
for i in range(len(nums)):
count += nums[i]
if count > result: # 取区间累计的最大值(相当于不断确定最大子序终止位置)
result = count
if count <= 0: # 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
count = 0
return result
func maxSubArray(nums []int) int {
maxSum := nums[0]
for i := 1; i < len(nums); i++ {
if nums[i] + nums[i-1] > nums[i] {
nums[i] += nums[i-1]
}
if nums[i] > maxSum {
maxSum = nums[i]
}
}
return maxSum
}
pub fn max_sub_array(nums: Vec<i32>) -> i32 {
let mut max_sum = i32::MIN;
let mut curr = 0;
for n in nums.iter() {
curr += n;
max_sum = max_sum.max(curr);
curr = curr.max(0);
}
max_sum
}
var maxSubArray = function(nums) {
let result = -Infinity
let count = 0
for(let i = 0; i < nums.length; i++) {
count += nums[i]
if(count > result) {
result = count
}
if(count < 0) {
count = 0
}
}
return result
};
int maxSubArray(int* nums, int numsSize){
int maxVal = INT_MIN;
int subArrSum = 0;
int i;
for(i = 0; i < numsSize; ++i) {
subArrSum += nums[i];
// 若当前局部和大于之前的最大结果,对结果进行更新
maxVal = subArrSum > maxVal ? subArrSum : maxVal;
// 若当前局部和为负,对结果无益。则从nums[i+1]开始应重新计算。
subArrSum = subArrSum < 0 ? 0 : subArrSum;
}
return maxVal;
}
/**
* 解题思路:动态规划:
* 1. dp数组:dp[i]表示从0到i的子序列中最大序列和的值
* 2. 递推公式:dp[i] = max(dp[i-1] + nums[i], nums[i])
若dp[i-1]<0,对最后结果无益。dp[i]则为nums[i]。
* 3. dp数组初始化:dp[0]的最大子数组和为nums[0]
* 4. 推导顺序:从前往后遍历
*/
#define max(a, b) (((a) > (b)) ? (a) : (b))
int maxSubArray(int* nums, int numsSize){
int dp[numsSize];
// dp[0]最大子数组和为nums[0]
dp[0] = nums[0];
// 若numsSize为1,应直接返回nums[0]
int subArrSum = nums[0];
int i;
for(i = 1; i < numsSize; ++i) {
dp[i] = max(dp[i - 1] + nums[i], nums[i]);
// 若dp[i]大于之前记录的最大值,进行更新
if(dp[i] > subArrSum)
subArrSum = dp[i];
}
return subArrSum;
}
function maxSubArray(nums: number[]): number {
let curSum: number = 0;
let resMax: number = -Infinity;
for (let i = 0, length = nums.length; i < length; i++) {
curSum += nums[i];
resMax = Math.max(curSum, resMax);
if (curSum < 0) curSum = 0;
}
return resMax;
}
// 动态规划
function maxSubArray(nums: number[]): number {
const length = nums.length;
if (length === 0) return 0;
const dp: number[] = [];
dp[0] = nums[0];
let resMax: number = nums[0];
for (let i = 1; i < length; i++) {
dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
resMax = Math.max(resMax, dp[i]);
}
return resMax;
}
object Solution {
def maxSubArray(nums: Array[Int]): Int = {
var result = Int.MinValue
var count = 0
for (i <- nums.indices) {
count += nums(i) // count累加
if (count > result) result = count // 记录最大值
if (count <= 0) count = 0 // 一旦count为负,则count归0
}
result
}
}