0300.最长上升子序列
参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
# 300.最长递增子序列 [力扣题目链接](https://leetcode.cn/problems/longest-increasing-subsequence/) 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 示例 1: * 输入:nums = [10,9,2,5,3,7,101,18] * 输出:4 * 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。 示例 2: * 输入:nums = [0,1,0,3,2,3] * 输出:4 示例 3: * 输入:nums = [7,7,7,7,7,7,7] * 输出:1 提示: * 1 <= nums.length <= 2500 * -10^4 <= nums[i] <= 104 ## 算法公开课 **[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)::[动态规划之子序列问题,元素不连续!| LeetCode:300.最长递增子序列](https://www.bilibili.com/video/BV1ng411J7xP),相信结合视频再看本篇题解,更有助于大家对本题的理解**。 ## 思路 首先通过本题大家要明确什么是子序列,“子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序”。 本题也是代码随想录中子序列问题的第一题,如果没接触过这种题目的话,本题还是很难的,甚至想暴力去搜索也不知道怎么搜。 子序列问题是动态规划解决的经典问题,当前下标i的递增子序列长度,其实和i之前的下表j的子序列长度有关系,那又是什么样的关系呢。 接下来,我们依然用动规五部曲来详细分析一波: 1. dp[i]的定义 本题中,正确定义dp数组的含义十分重要。 **dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度** 为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小,那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了,不是尾部元素的比较那么 如何算递增呢。 2. 状态转移方程 位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。 所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1); **注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值**。 3. dp[i]的初始化 每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1. 4. 确定遍历顺序 dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历。 j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了。 所以默认习惯 从前向后遍历。 遍历i的循环在外层,遍历j则在内层,代码如下:for (int i = 1; i < nums.size(); i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > result) result = dp[i]; // 取长的子序列
}
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
vector<int> dp(nums.size(), 1);
int result = 0;
for (int i = 1; i < nums.size(); i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > result) result = dp[i]; // 取长的子序列
}
return result;
}
};
class Solution {
public int lengthOfLIS(int[] nums) {
int[] dp = new int[nums.length];
int res = 1;
Arrays.fill(dp, 1);
for (int i = 1; i < dp.length; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
res = Math.max(res, dp[i]);
}
}
return res;
}
}
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if len(nums) <= 1:
return len(nums)
dp = [1] * len(nums)
result = 1
for i in range(1, len(nums)):
for j in range(0, i):
if nums[i] > nums[j]:
dp[i] = max(dp[i], dp[j] + 1)
result = max(result, dp[i]) #取长的子序列
return result
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if len(nums) <= 1:
return len(nums)
tails = [nums[0]] # 存储递增子序列的尾部元素
for num in nums[1:]:
if num > tails[-1]:
tails.append(num) # 如果当前元素大于递增子序列的最后一个元素,直接加入到子序列末尾
else:
# 使用二分查找找到当前元素在递增子序列中的位置,并替换对应位置的元素
left, right = 0, len(tails) - 1
while left < right:
mid = (left + right) // 2
if tails[mid] < num:
left = mid + 1
else:
right = mid
tails[left] = num
return len(tails) # 返回递增子序列的长度
// 动态规划求解
func lengthOfLIS(nums []int) int {
// dp数组的定义 dp[i]表示取第i个元素的时候,表示子序列的长度,其中包括 nums[i] 这个元素
dp := make([]int, len(nums))
// 初始化,所有的元素都应该初始化为1
for i := range dp {
dp[i] = 1
}
ans := dp[0]
for i := 1; i < len(nums); i++ {
for j := 0; j < i; j++ {
if nums[i] > nums[j] {
dp[i] = max(dp[i], dp[j] + 1)
}
}
if dp[i] > ans {
ans = dp[i]
}
}
return ans
}
func max(x, y int) int {
if x > y {
return x
}
return y
}
func lengthOfLIS(nums []int ) int {
dp := []int{}
for _, num := range nums {
if len(dp) == 0 || dp[len(dp) - 1] < num {
dp = append(dp, num)
} else {
l, r := 0, len(dp) - 1
pos := r
for l <= r {
mid := (l + r) >> 1
if dp[mid] >= num {
pos = mid;
r = mid - 1
} else {
l = mid + 1
}
}
dp[pos] = num
}//二分查找
}
return len(dp)
}
const lengthOfLIS = (nums) => {
let dp = Array(nums.length).fill(1);
let result = 1;
for(let i = 1; i < nums.length; i++) {
for(let j = 0; j < i; j++) {
if(nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j]+1);
}
}
result = Math.max(result, dp[i]);
}
return result;
};
function lengthOfLIS(nums: number[]): number {
/**
dp[i]: 前i个元素中,以nums[i]结尾,最长子序列的长度
*/
const dp: number[] = new Array(nums.length).fill(1);
let resMax: number = 0;
for (let i = 0, length = nums.length; i < length; i++) {
for (let j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
resMax = Math.max(resMax, dp[i]);
}
return resMax;
};