0509.斐波那契数
参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
# 509. 斐波那契数 [力扣题目链接](https://leetcode.cn/problems/fibonacci-number/) 斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。 示例 1: * 输入:2 * 输出:1 * 解释:F(2) = F(1) + F(0) = 1 + 0 = 1 示例 2: * 输入:3 * 输出:2 * 解释:F(3) = F(2) + F(1) = 1 + 1 = 2 示例 3: * 输入:4 * 输出:3 * 解释:F(4) = F(3) + F(2) = 2 + 1 = 3 提示: * 0 <= n <= 30 ## 算法公开课 **[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[手把手带你入门动态规划 | leetcode:509.斐波那契数](https://www.bilibili.com/video/BV1f5411K7mo),相信结合视频在看本篇题解,更有助于大家对本题的理解**。 ## 思路 斐波那契数列大家应该非常熟悉不过了,非常适合作为动规第一道题目来练练手。 因为这道题目比较简单,可能一些同学并不需要做什么分析,直接顺手一写就过了。 **但「代码随想录」的风格是:简单题目是用来加深对解题方法论的理解的**。 通过这道题目让大家可以初步认识到,按照动规五部曲是如何解题的。 对于动规,如果没有方法论的话,可能简单题目可以顺手一写就过,难一点就不知道如何下手了。 所以我总结的动规五部曲,是要用来贯穿整个动态规划系列的,就像之前讲过[二叉树系列的递归三部曲](https://www.programmercarl.com/二叉树的递归遍历.html),[回溯法系列的回溯三部曲](https://programmercarl.com/回溯算法理论基础.html)一样。后面慢慢大家就会体会到,动规五部曲方法的重要性。 ### 动态规划 动规五部曲: 这里我们要用一个一维dp数组来保存递归的结果 1. 确定dp数组以及下标的含义 dp[i]的定义为:第i个数的斐波那契数值是dp[i] 2. 确定递推公式 为什么这是一道非常简单的入门题目呢? **因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];** 3. dp数组如何初始化 **题目中把如何初始化也直接给我们了,如下:** 4. 确定遍历顺序 从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的 5. 举例推导dp数组 按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列: 0 1 1 2 3 5 8 13 21 34 55 如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。 以上我们用动规的方法分析完了,C++代码如下:class Solution {
public:
int fib(int N) {
if (N <= 1) return N;
vector<int> dp(N + 1);
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= N; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[N];
}
};
class Solution {
public:
int fib(int N) {
if (N <= 1) return N;
int dp[2];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= N; i++) {
int sum = dp[0] + dp[1];
dp[0] = dp[1];
dp[1] = sum;
}
return dp[1];
}
};
class Solution {
public int fib(int n) {
if (n < 2) return n;
int a = 0, b = 1, c = 0;
for (int i = 1; i < n; i++) {
c = a + b;
a = b;
b = c;
}
return c;
}
}
//非压缩状态的版本
class Solution {
public int fib(int n) {
if (n <= 1) return n;
int[] dp = new int[n + 1];
dp[0] = 0;
dp[1] = 1;
for (int index = 2; index <= n; index++){
dp[index] = dp[index - 1] + dp[index - 2];
}
return dp[n];
}
}
class Solution:
def fib(self, n: int) -> int:
# 排除 Corner Case
if n == 0:
return 0
# 创建 dp table
dp = [0] * (n + 1)
# 初始化 dp 数组
dp[0] = 0
dp[1] = 1
# 遍历顺序: 由前向后。因为后面要用到前面的状态
for i in range(2, n + 1):
# 确定递归公式/状态转移公式
dp[i] = dp[i - 1] + dp[i - 2]
# 返回答案
return dp[n]
class Solution:
def fib(self, n: int) -> int:
if n <= 1:
return n
dp = [0, 1]
for i in range(2, n + 1):
total = dp[0] + dp[1]
dp[0] = dp[1]
dp[1] = total
return dp[1]
class Solution:
def fib(self, n: int) -> int:
if n <= 1:
return n
prev1, prev2 = 0, 1
for _ in range(2, n + 1):
curr = prev1 + prev2
prev1, prev2 = prev2, curr
return prev2
class Solution:
def fib(self, n: int) -> int:
if n < 2:
return n
return self.fib(n - 1) + self.fib(n - 2)
func fib(n int) int {
if n < 2 {
return n
}
a, b, c := 0, 1, 0
for i := 1; i < n; i++ {
c = a + b
a, b = b, c
}
return c
}
var fib = function(n) {
let dp = [0, 1]
for(let i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2]
}
console.log(dp)
return dp[n]
};
var fib = function(n) {
// 动规状态转移中,当前结果只依赖前两个元素的结果,所以只要两个变量代替dp数组记录状态过程。将空间复杂度降到O(1)
let pre1 = 1
let pre2 = 0
let temp
if (n === 0) return 0
if (n === 1) return 1
for(let i = 2; i <= n; i++) {
temp = pre1
pre1 = pre1 + pre2
pre2 = temp
}
return pre1
};
function fib(n: number): number {
/**
dp[i]: 第i个斐波那契数
dp[0]: 0;
dp[1]:1;
...
dp[i] = dp[i - 1] + dp[i - 2];
*/
const dp: number[] = [];
dp[0] = 0;
dp[1] = 1;
for (let i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
};
int fib(int n){
//当n <= 1时,返回n
if(n <= 1)
return n;
//动态开辟一个int数组,大小为n+1
int *dp = (int *)malloc(sizeof(int) * (n + 1));
//设置0号位为0,1号为为1
dp[0] = 0;
dp[1] = 1;
//从前向后遍历数组(i=2; i <= n; ++i),下标为n时的元素为dp[i-1] + dp[i-2]
int i;
for(i = 2; i <= n; ++i) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
int fib(int n){
//若n小于等于1,返回n
if(n <= 1)
return n;
//否则返回fib(n-1) + fib(n-2)
return fib(n-1) + fib(n-2);
}
impl Solution {
pub fn fib(n: i32) -> i32 {
if n <= 1 {
return n;
}
let n = n as usize;
let mut dp = vec![0; n + 1];
dp[1] = 1;
for i in 2..=n {
dp[i] = dp[i - 2] + dp[i - 1];
}
dp[n]
}
}
impl Solution {
pub fn fib(n: i32) -> i32 {
if n <= 1 {
n
} else {
Self::fib(n - 1) + Self::fib(n - 2)
}
}
}
object Solution {
def fib(n: Int): Int = {
if (n <= 1) return n
var dp = new Array[Int](n + 1)
dp(1) = 1
for (i <- 2 to n) {
dp(i) = dp(i - 1) + dp(i - 2)
}
dp(n)
}
}