0518.零钱兑换II
参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
# 518.零钱兑换II [力扣题目链接](https://leetcode.cn/problems/coin-change-ii/) 给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。 示例 1: * 输入: amount = 5, coins = [1, 2, 5] * 输出: 4 解释: 有四种方式可以凑成总金额: * 5=5 * 5=2+2+1 * 5=2+1+1+1 * 5=1+1+1+1+1 示例 2: * 输入: amount = 3, coins = [2] * 输出: 0 * 解释: 只用面额2的硬币不能凑成总金额3。 示例 3: * 输入: amount = 10, coins = [10] * 输出: 1 注意,你可以假设: * 0 <= amount (总金额) <= 5000 * 1 <= coin (硬币面额) <= 5000 * 硬币种类不超过 500 种 * 结果符合 32 位符号整数 ## 算法公开课 **[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II](https://www.bilibili.com/video/BV1KM411k75j/),相信结合视频再看本篇题解,更有助于大家对本题的理解**。 ## 思路 这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。 对完全背包还不了解的同学,可以看这篇:[动态规划:关于完全背包,你该了解这些!](https://programmercarl.com/背包问题理论基础完全背包.html) 但本题和纯完全背包不一样,**纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!** 注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢? 例如示例一: 5 = 2 + 2 + 1 5 = 2 + 1 + 2 这是一种组合,都是 2 2 1。 如果问的是排列数,那么上面就是两种排列了。 **组合不强调元素之间的顺序,排列强调元素之间的顺序**。 其实这一点我们在讲解回溯算法专题的时候就讲过了哈。 那我为什么要介绍这些呢,因为这和下文讲解遍历顺序息息相关! 回归本题,动规五步曲来分析如下: 1. 确定dp数组以及下标的含义 dp[j]:凑成总金额j的货币组合数为dp[j] 2. 确定递推公式 dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。 所以递推公式:dp[j] += dp[j - coins[i]]; **这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇[494. 目标和](https://programmercarl.com/0494.目标和.html)中就讲解了,求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];** 3. dp数组如何初始化 首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。 那么 dp[0] = 1 有没有含义,其实既可以说 凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。 但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。 这里我认为题目描述还是要说明一下,因为后台测试数据是默认,amount = 0 的情况,组合数为1的。 下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j] dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。 4. 确定遍历顺序 本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢? 我在[动态规划:关于完全背包,你该了解这些!](https://programmercarl.com/背包问题理论基础完全背包.html)中讲解了完全背包的两个for循环的先后顺序都是可以的。 **但本题就不行了!** 因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行! 而本题要求凑成总和的组合数,元素之间明确要求没有顺序。 所以纯完全背包是能凑成总和就行,不用管怎么凑的。 本题是求凑出来的方案个数,且每个方案个数是为组合数。 那么本题,两个for循环的先后顺序可就有说法了。 我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。 代码如下:for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
dp[j] += dp[j - coins[i]];
}
}
for (int j = 0; j <= amount; j++) { // 遍历背包容量
for (int i = 0; i < coins.size(); i++) { // 遍历物品
if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
}
}
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
};
class Solution {
public int change(int amount, int[] coins) {
//递推表达式
int[] dp = new int[amount + 1];
//初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装
dp[0] = 1;
for (int i = 0; i < coins.length; i++) {
for (int j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
}
// 二维dp数组版本,方便理解
class Solution {
public int change(int amount, int[] coins) {
int[][] dp = new int[coins.length][amount + 1];
// 只有一种硬币的情况
for (int i = 0; i <= amount; i += coins[0]) {
dp[0][i] = 1;
}
for (int i = 1; i < coins.length; i++) {
for (int j = 0; j <= amount; j++) {
// 第i种硬币使用0~k次,求和
for (int k = 0; k * coins[i] <= j; k++) {
dp[i][j] += dp[i - 1][j - k * coins[i]];
}
}
}
return dp[coins.length - 1][amount];
}
}
class Solution:
def change(self, amount: int, coins: List[int]) -> int:
dp = [0]*(amount + 1)
dp[0] = 1
# 遍历物品
for i in range(len(coins)):
# 遍历背包
for j in range(coins[i], amount + 1):
dp[j] += dp[j - coins[i]]
return dp[amount]
func change(amount int, coins []int) int {
// 定义dp数组
dp := make([]int, amount+1)
// 初始化,0大小的背包, 当然是不装任何东西了, 就是1种方法
dp[0] = 1
// 遍历顺序
// 遍历物品
for i := 0 ;i < len(coins);i++ {
// 遍历背包
for j:= coins[i] ; j <= amount ;j++ {
// 推导公式
dp[j] += dp[j-coins[i]]
}
}
return dp[amount]
}
impl Solution {
pub fn change(amount: i32, coins: Vec<i32>) -> i32 {
let amount = amount as usize;
let mut dp = vec![0; amount + 1];
dp[0] = 1;
for coin in coins {
for j in coin as usize..=amount {
dp[j] += dp[j - coin as usize];
}
}
dp[amount]
}
}
const change = (amount, coins) => {
let dp = Array(amount + 1).fill(0);
dp[0] = 1;
for(let i =0; i < coins.length; i++) {
for(let j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
function change(amount: number, coins: number[]): number {
const dp: number[] = new Array(amount + 1).fill(0);
dp[0] = 1;
for (let i = 0, length = coins.length; i < length; i++) {
for (let j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
};